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ABSTRACT
) >737 C
The/deformations, stresses, and vibration modes of a rotating net
in a' hypersonic air stream are analyzed. Particular emphasis is placed
on the '"isotensoid'" net of fiber circles that has the property that

fiber stress is everywhere equal when the spinning net is flat.

Numerical solutions are obtained for the large motion static de-
formations and stresses in an axisymmetric hypersonic air stream including

the effects of tip weights, hub radius, etc.

General expressions are written for the potential and kinetic energies
for small perturbations from an axisymmetric state of equilibrium. These
expressions are used to obtain numerical solutions for a variety of vi-
bration problems including in-plane and out-of-plane vibrations of a flat

net and the coupled vibrations of a statically deformed net. /gL‘XZ{‘vx,

iii
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MECHANICS OF A CONED ROTATING NET

1. INTRODUCTION

The present report represents a part of the effort expended during
a recent investigation into the feasibility of employing rotating nets
as atmospheric decelerators. In such applications a net would be constructed
as a closely-woven fabric of high-strength fibers and would support aero-
dynamic load normal to its surface by means of centrifugal force. |In general
the rotor net is characterized by extremely low values of ballistic coeffi-
cient, m/CDA, and low structural weight. Operation in both the hypersonic

and subsonic phases of atmospheric entry is contemplated.

The subject of this report is the analysis of the deformations and
stresses of a rotor net for the simplest and most elementary conditions
excluding, for example, flight at an angle of incidence to the airstream.
A high standard of mathematical rigor is maintained in order to provide
a reliable basis for future investigations. Other aspects of the present

rotor net investigation are reported in references 4 and 5.

The rotor net has certain features that tend to simplify the mathe-
matical analysis of its motions. These include the absence of signifi-
cant bending rigidity, rotational symmetry, and the ability to undergo
some types of large deformation without appreciable elastic strain.

On the. other hand the analysis of the rotor net is complicated by the
effects of rotation, particularly those that are identified as Coriolis

and centrifugal stiffening effects.



In this report, the analysis of large static deformatiéns due to
axisymmetric air load is taken up first. The next topic is a general
treatment of potential and kinetic energy for small motions from a state
of equilibrium. The report concludes with a series of analyses of the
vibrations of flat nets and nets that are coned up due to axisymmetric

air load.




[

“ 2. NET GEOMETRY

The nets that will be considered are constructed from two symmetrical
sets of very slender fibers that intersect to form elemental diamonds as
shown in Fig. 1. Such nets can be deformed from a plane into a smooth
axisymmetric surface without appreciable elastic distortion. This pro-
perty is particularly useful in aerodynamic applications where the main-

tenance of a smooth surface is important.

In general it will be assumed that the net is supported at its inner
boundary by a rigid hub. 1In some instances concentrated weights will be

located at the periphery of the net.

Special attention will be paid to the case in which the fibers of
the net describe circles that pass through the axis of symmetry as shown
in Fig. 2. It has been shown (Ref. 1) that the stress in the fibers of
such a net is everywhere constant when the net is rotated to produce a
radial centrifugal force distribution proportional to the mass density of
‘ the fibers. It will be of particular interest to determine whether, and
to what extent, the constant-stress property of the rotating '"isotensoid"
net is maintained when the net is subjected to axisymmetric aerodynamic

loading.

The isotensoid net of circular fibers has certain geometrical pro-
perties that will be used repeatedly in the work that follows. Consider
an individual fiber circle shown in Fig. 3a. The angle that the fiber
! circle makes with a radial line is related to the distance from the polar

axis by



siny = = (2-1)

where a is the radius of the fiber circle.

The length of the side of an elemental diamond of the net, Fig. 3b,
may be calculated by considering that the sum of the transverse diagonals

at a fixed radius is equal to the circumference. Thus
2rr = 2mMsiny (2-2)
where N is the number of fibers per radian in both sets. Using Egn. (2-1)
L = & (2-3)

so that the side lengths of all elemental diamonds in the isotensoid net

are equal.
The mass per unit area of the isotensoid net is related to the pro-
perties of the fibers by

p AN o AN
m' = f = _——f (2‘4)

rcosy asin2y

density of fiber material

ko]
-
n

p
I

cross-sectional area of fibers

It is seen from Eqn. (2-4) that the mass density of the net becomes




.

o

very large near the axis (r—=0) and near the periphery (yv—=90°). Thus
in practical applications the net will be terminated in a rigid hub near

the axis and in a set of concentrated weights at the periphery.




3. STATIC AXISYMMETRIC DEFORMATION WITHOUT ELASTIC DISTORTION IN A

HYPERSONIC STREAM

The problem considered here is the determination of the shape that an
axisymmetric net will take when rotating about its axis and subjected to a
hypersonic stream parallel to the axis. Stresses in the fibers of the net

will also be computed.

Since the deformations that are contemplated are large, it will not
be possible to use small motion theory. The complexity of the problem is,
therefore, such that a digital computer is required to obtain numerical

results.

The loads acting on the net are shown in Fig. 4. The net is subjected

to a radial centrifugal force density per unit area

F = ml r (3-1)

where
m = mass per unit area of the net
N = rotational speed rad/sec
r = distance to the axis of rotation

The aerodynamic load is computed using the Newtonian flow concept.

The aerodynamic force per unit area normal to the surface of the net is

Fn = pUZCOSZB (3-2)




where

p = free stream atmospheric density
U = velocity of the net parallel to the axis of rotation
B = local coning angle between the tangent to the net and a plane

perpendicular to the axis of rotation.

The loads are equilibrated by the forces in the fibers of the net.
let NS be the internal tensile force per unit width of net directed along
the intersection of the net with a radial plane and let Ng be the internal
tensile force per unit width of net directed along the intersection of the
net with a circular cylinder. The equations for equilibrium of forces in

a radial plane are

N

g

Lo wn-Lsr = o (3-3)

and
N Fn - Fr sinp
B _ _ 0 tanB _ a : (3-4)
or N r N cosP
s s
The above equations are applicable to any axisymmetric shell in which

bending moments are negligible, for example, a thin metal sheet. |In the

case of a net the force densities NS and Ng are not independent. They
are related through the statics of an elementary fiber diamond as shown

in Fig. 5. The relationship is

Ny = N_tan’y (3-5)



which may be used to eliminate Ng from Eqns. (3-3) and (3-4). These

equations become, using Eqns. (3-1) and (3-2)

8% (Nsr) - NstanzY + mﬂzr2 = 0 (3-6)
and

B - tanz tanf pUZCOSZB - mﬂzr sinB (3-7)

or L NscosB

The angle vy appearing in these equations is not independent of the
deformations of the net. Equation .(2-2), which relates v to the distance
from the axis of revolution, is valid for any axisymmetrically deformed

shape. Thus

siny _ r_ -
sin Yo r (3-8)

where rO is the radius and Yo is the angle when the net is flat.

Likewise, ‘for the slant length of the deformed diamond,

AS _ cos Y _
Ar cos Y (3-9)
(o] (o]

so that, replacing the small diamonds by infinitesimals

j: = cosP ji _ cosBcosy (3-10)

COs
o YO




Equations (3-6), (3-7), (3-8) and (3-10) are a set of four differential
equations in the dependent variables r, B, v and Ns which will be integrated
with respect to o It should first, however, be noted that m, the mass
per unit area, is not independent of the deformation since it varies in-
versely with the area of the elemental diamond. Thus

sin2y
> (3-11)

sin 27
where m', the mass per unit area when the net is flat, may be evaluated

by means of Eqgn. (2-4).

Three boundary conditions are required to complete the specification
of the integration problem. One condition is that, at the inner edge of

the net

r = b, at r_ = b (3-12)

The other two boundary conditions are applied at the outer edge of
the net, ro = R. It will be assumed that small tip weights with aero-
dynamic surfaces are attached to the periphery of the net. The equilibrium

of aerodynamic and centrifugal forces on the tip weights requires that

2 2 _ 2 . -
'ﬂapU cos Bt = mtn rtsmBt (3-13)
where
1z s
= St——— — H d 1 f
A >R effective length of aerodynamic surface




10

m tip mass per unit length when the net is flat.

t

The load per unit length in the net at the rim is

(3-14)

Before indicating the method of solution, the equations describing

the problem will be normalized and collected together. Let
- N\
r = r R
r = rR
o o}
b = bR > (3-15)
re = rtR
N o2 J
NS = NS pU~R
Define the parameter
2
U
B = —— (3-16)
1 Rm
o
where my is the mass per unit area just inside the outer periphery when
the net is flat.

is the coning angle that would result (at small coning) if mass

BI'ﬂ

density x radius were constant.

The normalized equations of state are

(3-17)




2 sin2y
P _ -tanytanB 1 _m o rtanB
or T N cosp m_ sin2y B (3-18)
s m
dr  _ cosBcosy (3-19)
d?g cosT -19
si = si L (3-20)
o= "y T -
while the normalized boundary conditions are
r =Db at T = b (3-21)
sin _ {é . ?E. )
COSZB ) Z;. v (3-22)
> at r_ =1
o
N = fﬁ cos

where 4
m

= mt/mO is the width of the strip of net near the periphery that

has the same mass as the tip weights.

The

2.

parameters that describe the problem are
Bm, the 'mean'' coning angle

E, the dimensionless hub radius

22
T?-, a parameter describing the size of the tip weights.

2

Zg , a parameter describing the proportion of tip weight area
m

that is aerodynamically effective

11



5. — Vs ?6, the mass distribution of the flat net
6. Y_ vs ?6, the spiral angle of the flat net

For the special case of an '"isotensoid' net of circular fibers which
is terminated at a radius smaller than the diameter of the fiber circles,

the spiral angle at the tip will be
. -1,R
T = sin (Za) (3-24)

where 2a is the diameter of the fiker circle.

The spiral angle at other radii is given by

-
1

-
0 = sinnI {?%} = sin-](FosinYot) (3-25)

For such nets the mass distribution, as obtained from Egn. (2-4) is

o sin ZYOt
m_  sin 2v (3-26)
) o

Thus the mass distribution and spiral angle of nets with circular
fiber patterns are both specified by Yo , the spiral angle at the peri-

t
phery of the net.

The differential equations are solved as a pseudo initial value
problem by arbitrarily specifying a value of T at Fé = |. Values of B
and Ns may then be obtained from Eqns. (3-22) and (3-23) to provide

starting values for the step-by-step numerical integration of Eqns. (3-17)

12




to (3-20). Unless the correct value of T at the tip has been selected
it will be found, after integrating the equations of state, that the
boundary condition at the hub, Eqn. (3-21), is not satisfied. Other
trial values of r at the tip are selected and solutions calculated until
the error in the hub boundary condition is considered to be sufficiently
small. Alternatively.E may be regarded as a variable parameter, so that

every trial value of T at the tip yields a correct solution for b equal

to the value of ?5 at which r = F;.
Once the normalized equations have been solved, the stress in the
fibers of the net is obtained from

Ns {tanY

% e L oU%R Ltany/A (3-27)

For the special case of the isotensoid net of circles, it may be

shown, Ref. 1, that the fiber stress for a flat disc is

o, = 220’0 (3-28)

It is of interest to compare the actual fiber stress with o i f

the actual net is also a net of fiber circles then it may be shown,

after some manipulation, that

—; = ZNSBmtanYOttanY (3-29)

13




where the basis of comparison between the actual net and the flat net is

that they have the same angular velocity Q.

The total drag force for the rotor net may be expressed in the form

1 2 2
D = S pUTRC, (3-30)

where CD is the drag coefficient. The drag may be computed from the value

of NS at the hub

D = Zwas Sian (3-31)
b

where Bb is the coning angle at r = b. Comparing Eqns. (3-31) with
(3-30), and using the definitions of Eqn. (3-15)

Cp = 4b N sing (3-32)

b
Representative numerical results are presented in Figs. 6 through

12. Figure 6 shows the shape that the rotor net assumes for three dif-
ferent values of the coning parameter, Bm. For low coning the net has a
flared appearance, being flatter near the rim than it is near the hub.
For high coning the net has a more nearly conical shape. These charac-
teristics are seen more clearly in Fig. 7, which shows the local coning
angle as a function of ?5. The fiber stress is plotted in Fig. 8 where
it is seen that large coning increases the variation of fiber stress

with distance from the hub.

14




.

The fiber spiral angle at the rim, T, o has a pronounced effect on
t
the flare of the rotor net, Fig. 9, and also on fiber stress, Fig. 10.
A low value of Yo decreases the flare but increases the variation of

t
fiber stress with distance from the hub.

The effect of changes in tip weight on fiber stress is plotted in
Fig. 11. For low coning a value of tip weight can be found that will pro-
duce a nearly uniform fiber stress. This result cannot be achieved for
high coning. The effect of tip weight size on coning angle was found to
be small. The effects of variations in the hub radius, E, and the aero-
dynamic effectiveness of the tip weights,‘ﬂa/{h, were also investigated

and were found to be small.

The variation of drag coefficient with the coning parameter, Bm’ is

plotted in Fig. 12.

In the theory and calculations presented here it is assumed that all
of the drag force is reacted at the hub. Thus in a condition of uniform
deceleration during atmospheric reentry, the effects of axial inertia
force on the net itself are neglected. |If the coning angle and mass dis-
tribution were uniform over the surface of the net, these effects would
be zero. Since the net is more dense near the hub and the rim than it is
at points between, the major effect of inertia force on the net will be

to increase the flare.

Another important assumption is that the flow through the pores of
the net is negligibly small and does not alter the normal force coefficient
predicted by Newtonian flow theory. It may be shown that the assumption is
valid under hypersonic flow conditions provided that the porosity is not so
large that shock waves form around individual fibers rather than standing

off from the rotor net.

15
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L. ENERGY EXPRESSIONS FOR SMALL MOTIONS FROM AN AXISYMMETRIC STATE OF

EQUILIBRIUM

Small motion theory is valid for the solution of many of the prac-
tical problems that arise in connection with a rotating net decelerator,
including vibrations, flutter, dynamic loads, flight stability, and
control. Energy expressions based on small motion theory will be developed

in this section for subsequent application to vibration problems.

It will be assumed that an initially flat net is deformed by air
loads into a surface of revolution. Components of displacement from the
deformed equilibrium shape are defined in Fig. 13. The coordinate system

is assumed to rotate with the net. s is the distance along a meridian.

The components of membrane strain and rotation with respect to the
rotating coordinate system, as obtained from general expressions in

Ref. 2, are:

STRAINS:
du
_ s _ % ;
s T S Y 3s (4-1)
| Bug u,cos B - w sin B
9 T Y r (4-2)
) du
- .9 ] 1l _s
s "3 {? }' Y (4-3)




ROTATIONS (Right Hand Rule):

% ~ 2‘? - %%% (4-5)
| o - {5 - ) ()
Three types of energy will be considered. These are

1. Elastic energy due to membrane strain
2. Potential energy due to work done against the static preloads that
are present because of centrifugal forces and static air load.

3. Kinetic energy due to perturbation motions.

The expression for elastic energy due to membrane strain may be com-
puted by reference to the geometrical configuration of an individual fiber
diamond. Figure 14 shows the motions of three of the vertices of a fiber
diamond due to membrane strain. Rotation about an axis normal to the plane

of the diamond is restrained to be zero. The elastic strain energy of

fiber (a) is
1 EA 2
Ve = 5 T (Aua)
a
1 2 2 2
= = EAL{ € cosy + e sin“y + €__sinrcosy (4-7)
2 S @ s@

while the elastic strain energy of fiber (b) is

17




1 EA 2
veb = 3T Qﬁub)
1 2 2 2
= - EAL YL € cos“y + €,5in“y - ¢__sinrcosr (4-8)
2 ) @ Sg

The strain energy per unit area is

Ve * Ve
a b EA 2 .2 \2
Y = —— =T-.——{(ecosr+ € sin‘Y)
e ZﬁzsinycosY 2LsinycosYy s g
+ € zsinz‘rcoszY} (4-9)
s
which also may be written
_ EAsin2y 2 2

6Ve = L {( €sCtnY+ EgtanY) + es@} (4-10)
It will be noted that this expression is quite different from that for

an isotropic membrane. For v = /4, the effective Poisson's ratio is 1.0.

In order to obtain an expression for the potential energy due to work
done against the static preload, consider an elemental diamond as a free
body with the preload forces acting at the vertices, and compute the work
done when the diamond is displaced. The forces at the vertices must remain
fixed in magnitude and direction during such virtual displacements in-order

that they may continue to be in equilibrium with the applied (unperturbed)

aerodynamic and centrifugal loads.

The static forces acting on an elemental diamond are shown in Fig. 15.
For any distortion of the diamond the work done per unit area against these

forces is

18




Lsi - . _
2NS SInY(us ug ) + 2N§&SInYtanY(ug u

s )
sV, = -{ 2 '2 a: 3 } (4-11)
W sinycosy

The distortions to be considered are the three rotations, GS, 9@
and Qw, and a change in the spiral angle of the diamond, 3y. The distor-
tions enter into SVS raised to the second and higher powers. Since we are

interested only in the second powers of the distortions, it can be shown

that it is permissible to consider their effects separately.

Consider first a change in the spiral angle. Then

[t
1
c
Il

20 Qcos (v + By) - cos%} (4-12)

o
1
o4
It

/ 2L {sin(y + ®7) - sin%} (4-13)

or, to second order in dy

c
]
c
]

28 {cosy (1 - %(av)z) - siny v - cosT} (4-14)

y 22 dsiny (1 - %(6y)2) + cosy &Y - sin%} (k-15)

[
=
1

j o

I

Retaining only the second order terms

- L cosy (o1)2 (4-16)

c
1
c
It

o
1
=4
1]

- {,siny(BY)z (4-17)

19



and, upon substituting into Eqn. (4-11)

I B
8V, = 7 N_sec v (37) (4-18)

It is desired to express &y in terms of the cartesian strains €

and €,. From the first order terms in Egns. (4-14) and (4-15)
u -u
s, 5
€S = m— = « tany*° Oy (4']9)
”@4 } ”@B
€® = W = ctny- o7 (4-20)

Thus as long as elastic distortion is neglected there are two
alternative expressions for dy. The above pair of equations may be

(arbitrarily) combined to give
1
= —_—e E € -
oY > ( (CtnY + € tany) (h-21)
and, substituting into Eqn. (4-18)
Y 1 N SeCZY( € ctny - € tanY)2 (4-22)
s 8 s s g

Note the symmetrical manner in which €, and e, enter Eqns. (4-22)

and (4-10). No other reason is advanced, at present, for the arbitrary

choice in Eqn. (4-21).

20




Proceeding now to the effects of the rotations (considered independently)

c
1
c
]

chosY(cosew - 1) + 2 cosY(coseg - 1) (4-23)

[
1

c
It

5 ZﬁsinY(cosew - 1) +2 cosY(coses - 1) (k-24)

or, to second order in the distortions,

2

c
1
j
]

- £cosy(ewz + 0 (4-25)

2

(=
1
o
I

- J&ssny(ewz N esz) (4-26)

Upon substituting into Eqn. (4-11) and adding to the previous result
for the spiral angle
1 1 2 2 2 2 2 2 2
6VS = 3 Ng{ L sec v ( eSCtnY - egtanr) + sec v ew + Gg + tan Y 95 }
(4-27)
The expression for the kinetic energy density, omitting constant and

first order terms is

T

Zm {(ar T RV azz} (4-28)

where

u = u,cosf - w sinB (4-29)

21



is the radial component of displacement and

u, = usinB + w cosp (4-30)

is the vertical component of displacement.

In terms of Ugs Ugs and w, Eqn. (4-28) is
BT = l-m a2+ 2 202 20 { cosB(U,u_ - U u,) + sinB(Wwu, - U w)
2 S 2 27s s ¢ g g

+ ﬂz-{ ug2 + (uscosB -w sinB)2 }] (4-31)

The first three terms are ordinary inertia terms. The terms pro-
portional to N are related to Coriolis forces while the terms proportional
to ﬂ2 may be regarded as a negative stiffness effect of centrifugal force.
The positive stiffening effect of centrifugal force has been included in

the calculation of the work done against static preload.

The total energy density of the net is
BE = B®V_+ ®dV_ - BT (4-32)
e s
BV and 8V_ are obtained from Eqns. (4-10) and (4-27) respectively.

Expressions for the strains and rotations in terms of displacements,

Egqns. (1-6), will be inserted into 6Ve and SVS as needed in the applica-

tions that follow.
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5. OUT-OF-PLANE VIBRATIONS OF A FLAT ROTATING ISOTENSOID NET

As a simple example which results in a closed-form solution, the out-
of-plane vibration modes of an isotensoid net of fiber circles will be com-
puted. This example is the limiting case for small coning and will yield
information that is valuable for the estimation of the response to dynamic
loads and for the determination of the stability and control characteristics

of a vehicle employing a rotor net decelerator.

For a flat net the in-plane motions, ug and u do not couple with

g’

the out-of-plane motion, w. The appropriate energy expressions, derived

from the work of the preceding section, are

sV, = 3N (0,° + tan’y 0%
b ({3 - B =
and
BT = -;—m\;«z (5-2)

The total energy of the net

R 21

E = ff(avs - ®T) rdrdg
b o

1 STl =B

- mQZE rdrdg (5-3)
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Because of the polar symmetry of the net, the deflection of the net

in any vibration mode must be a sinusoidal function of #. Therefore let
W= wncos(nﬂ + wnt) (5-4)

which represents a wave traveling in the negative # direction with velocity

equal to wn/n radians/sec. A superposition of this wave with a similar

wave traveling in the forward direction yields a mode shape with nodal

lines along meridians.

Differentiate Egn. (5-4) to obtain

5 - - w.n sin(ng + wnt) (5-5)
wo= Spo= - wnwnSIn(n@ + wnt) (5-6)
so that, substituting into Eqn. (5-3) and integrating with respect to

R w 2 2
E = %f{Nsr [{;—_n} + n_2 tanzY wnz] - mrwnzwnz} dr (5-7)
5 r

For a net of fiber circles, Egns. (2-3), (2-4), (3-27) and (3-8) may

be used to put Eqn. (5-7) into the following form

R w 2 2 5
2 ) 2 {6n n 2 2 n 2
E = I —n N -
2 n pfANb/ {:Za cosy‘[ Y }-+ 432 sec’ Y W ] CosT W } dr
b
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‘where

B

It is convenient to change the variable of integration from r to 7.

by virtue of Egqn. (2-1)

dr = 2a cosy dy
and
dw dw
n ] . n
or 2a cosy dr

Eqn. (5-8) becomes
Yt y 2
2 1 2 21 —2 2
E _wmpfAN‘/-{Z[{:r}+nwnj‘-wnwn dy
b

This problem of minimizing E may be transformed into a differential

equation by means of the Euler equation

where

(5-9)

(5-10)

(5-11)

(5-12)

(5-13)

(5-14)
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which is an ordinary differential equation with constant coefficients.

Equation (5-14) will be solved with boundary conditions corresponding

to a full net with no tip weight (Yt = %) and a rigid restraint at the hub.

Thus

wn = 0 at Yy = Yb
dwn m
F = 0 at Yy = E

The solutions of Eqn. (5-14) that satisfy the above boundary con-

ditions are

N

(5-15)

where m is any odd integer.

Substitute this result into Eqn. (5-14) to obtain the normalized

frequency of vibration

1/2

+— (5-16)
cycles per revolution.

The above results may be used to estimate the dynamic response of

the rotor. In steady lifting flight wherein the velocity vector is not
parallel to the axis of revolution, the aerodynamic loads will not be axi-
symmetric. The loads will present a pattern that varies over the surface

of the rotor disc but does not change with time as viewed from a non-
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rotating coordinate system. Thus, in a coordinate system that rotates

with the rotor disc, the applied loads appear as a wave that travels
opposite to the direction of rotation with angular velocity 1. The applied
load distribution can, therefore, be represented as a series of harmonic

terms with the following form

o0}

F ==}:fn(r) cos (ng + nfit + an) (5-17)

Na
n=0

where fn(r) is a radial distribution function and o is a phase angle.

By comparing Egqns. (5-4) and (5-17), it is seen that a condition of
resonance between the vibration modes of the rotor and the harmonic distri-
bution of the applied load occurs when Bn =n. Nowm in Eqn. (5-16) can
take on all odd-integral values so that, if Y, = 0, resonances will occur
form=1, 3,5, 7. .. |If Ty is small, near resonances will occur for

2y
the same harmonics. For — << 1 and n = m Eqgn. (5-16) is approximated by

el
3

1

=)
—

+

l =

o

~ n{l +% (5-18)

It is concluded that the hub radius should be reasonably large, at
least 5% of rotor radius, in order to prevent high dynamic amplification of
harmonic air loads. The first harmonic (n = 1) air loads produce moments
on the hub that must be balanced by a control mechanism in order to maintain
trimmed 1ifting flight. The magnitude of the hub radius has therefore an

important effect on the flight dynamics of the vehicle as a whole.
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The mode shape for n = m =1 and b/R = .2 is plotted versus radius
in Fig. 16 where it is seen that the deviation from a straight line is

very small.
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6. CRITICAL SPEED FOR MASS UNBALANCE OF A FLAT ISOTENSOID NET

The usual definition for the critical speed of a rotating device is
the lowest speed at which the frequency of a vibration mode, as viewed
in the non-rotating system, is just equal to the speed of rotation. At
the critical speed a small amount of rotating mass unbalance will resonate
the vibration mode and cause high amplitude of response. As viewed in
the rotating system, the frequency of vibration is zero at the critical

speed. The unbalance force acts radially and can be represented by

1
-
0
[>is

gn(r) cos (nd + an) (6-1)

po )
It

where gn(r) is a radial distribution function and o is a phase angle.
Only the term for n = | has an external resultant on the hub and it is

for this term that the critical speed condition will be analyzed.

It will be assumed, for simplicity, that the net is flat. Under these
conditions the in-plane motions donot couple with the out-of-plane motions.

The relevant non-zero terms in the energy expressions of Section 4 are

_ EA sin2y 2 2 -
8Ve Y S {F g etny + egtanY) gy }' (6-2)
_ 1 1 2 2 2 2 _
6VS = 3 Ng{ L Sec v ( e ctny - egtanY) + sec’ Y ew }' (6-3)
_ 1202, 2 ]
8T = S m (u@ +oug ) (6-4)
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The appropriate expressions for strains and rotations are

du_
S (6-5)
€g ~ lr ;:_g * ':i (6-6)
€y = * % ?f".}+lr -a-;-i (6-7)
o e )

Due to the polar symmetry of the net and the choice of n =1, let

u, = u cos 4} (6-9)
uy = Eg sin @ (6-10)
Then
5,
€, = 357 cos @ (6-11)
'Jg u
€y = {:F— + FE} cos ¢ (6-12)
du u u
-1 2 _ 8 _ _s . -
€sp _'{ or r r }-snn g (6-13)
du u u
- 2 Y MR G
6, = 'E{ st Tt T }'Sln ¢ (6-14)
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Upon substituting these expressions into Eqns. (6-2), (6-3) and

(6-4) and integrating over the surface of the rotor

S EA sin2 G; - - t 2 _s i :b an ’
v, = % E;n Y‘[{zr ctay + (u, + uy) —%ﬂi} + {;——F——— - S?{} } rdr
° (6-15)
RW Ns .Us — =\ tany 2 ‘—s * Uﬂ éﬁb 2
Vs = fg 2 [{ir ctny - (us + ug) _r_} + {4 p + Br} ] rdr
N cos’ Y
(6-16)
R
1= [ Tan’ @ e ror (6-17)

b

For the special case of an isotensoid net of fiber circles, the
coefficients appearing in these expressions are related by the fiber

geometry such that

= _ e
Ye ~ %ﬂzmoR
E ) r2 Us - -, tany 2 _s M UQ aab z
= a\[costhosY 7 [{27 ctny + (uS + “g) _r_} +{J - - 57 }]dr
b (6-18)
To- s
s % ﬂzmoR
: cosT a2 —g - —  tany 2 _s * :é 565 2
= f o7 2—[{27- ctny - (uS + ug) -r—-} + {U . + Br} :ldr
" (6-19)
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I
(A%

R
cosY
- f t {J 2.3 2} dr (6-20)
cosY S 4]

It is assumed that the periphery of the net is weighted so that the
static stress in the net is everywhere equal to o the stress for a set
of full fiber circles. The required value of the tip weight parameter

is
L = 2a_ coszYt (6-21)

Equations (6-18), (6-19) and (6-20), together with the boundary
conditions at the hub and rim of the net, are a sufficient mathematical
description of the problem to be solved. Appendix A describes a numerical
method for obtaining solutions that accepts input information essentially

in the form of the above energy expressions.

The particular physical situation for which solutions have been
obtained is one in which an unbalanced force is applied to the net at a
rigid hub. The ratio of the applied force to the resulting motion of the
hub is proportional to the apparent mass of the rotor as viewed from the
non-rotating coordinate system. This result is shown in Fig. 7 where the
ratio of the apparent mass to the actual mass is plotted as a function of
co/E and the hub radius. In the case of an unrestrained vehicle with a
rigid fuselage the critical value of UO/E occurs when the sum of the

apparent mass of the rotor and the mass of the fuselage equals zero.
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For example if the fuselage mass is two times the rotor mass, the
critical value of UO/E is about 0.75. The resulting critical rotor speed

may be obtained with the aid of Egn. (3-28).

It will be observed that the critical value of cO/E exceeds 0.5 in
all cases. Thus, with the exception of extremely elastic materials that
can withstand strains of this magnitude, critical speeds for mass un-

balance will be well above the operating rotor speed.
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7. VIBRATIONS OF A CONED NET

The full generality of the equations derived in section 4 is required
for the calculation of the vibration modes of a rotor net that is deformed

by the action of steady axisymmetric air loads.

Let the motions of the net be described by an nth harmonic backward

traveling wave

w = wncos(n@ + ahﬂt) + wn" sin(ng + 5nnt) (7-1)

usncos(nﬂ + wnﬂt) + usn sin(ng + wnﬂt) (7-2)

c
i

nta
W

gnsin(n@ + Egnt) - ugn cos (ng + &%ﬂt) (7-3)

u = u

The starred terms are included in view of the possibility that the
phase angles between the three components of motion may not be exactly as
indicated by the unstarred terms. However, it is easily shown by substi-
tution into the general energy expressions that all energy terms proportional
to the product of starred and unstarred components vanish identically.
Therefore the starred and unstarred components are uncoupled and the phase

relationships between the components of motion are those indicated for the

unstarred components.

For motions of the above form the components of strain and rotation,

Egns. (4-1) to (4-6), become:
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S

where the

Bus
=<{ asn - B'w }'cos(n@ + Z%ﬂt)

='{'% Uy +"‘r—(us cosp - w_sinB) }'cos(nﬂ + E%nt)

n n

I
~—
Q/
o =

)

1 R -~
- r(uﬂnCOSB + nusn)}'SIn(nﬂ + wnﬂt)

1 . . —
r(uQ sinB - nwn) sin(ng + wnﬂt)

n
ow _
{-Sgﬂ + B'usn}'cos(nﬂ + wnnt)

du
] gn | _
= E { —as— + ?(ugnCOSB + nUSn) sin (n@ + (.L)nﬂt)

abbreviation, B' = %%3 has been used.

(7-4)

(7-5)

(7-6)

(7-7)

(7-8)

(7-9)

The expressions for energy obtained by substituting the strains and

rotations

into Eqns. (4-10), (4-27), and (4-31) and integrating over the

surface of the net will not be written here in view of the straight for-

wardness of the process and the complexity of the result.

Solutions have been obtained by the method described in Appendix A

(with greater complication due to the proliferation of terms) for the
case of an isotensoid net of fiber circles. Input data regarding the
equilibrium shape and state of stress in the net have been taken from the
results presented in section 3. The cases considered are the n = 1 modes

with a rigid hub and the following parameters held fixed:
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The frequencies of the three lowest modes are plotted in Fig. 18 as a
function of the coning parameter, Bm. The following significant facts will

be observed

1. The frequencies of modes identified as flapping modes (primarily
out-of-plane motion) are nearly independent of the elastic modulus
of the net material, whereas the frequency of the mode identified
as the first tangential mode is strongly dependent on the modulus

of the net material.

2. The frequencies of all modes decrease with increased coning.
The frequency of the first flapping mode crosses the one/rev.
line which has profound significance for the stability and control
characteristics of a vehicle employing a rotor-net decelerator.
Simplified analyses (see Ref. 3) usually yield the result that
the frequency of the lowest flapping mode increases with increased

coning.

3. The amount by which the frequency of the first tangential mode

exceeds one cycle per revolution is roughly proportional to E/oO

The uncoupled mode shape for the first tangential mode is shown in
Fig. 19. Large shear strain is indicated near the hub due to the small
spiral angle, v, of the fibers in this region. An increase in the spiral
angle at the hub would probably result in a significant increase in the

frequency of this mode.

Coupled mode shapes are shown in Figs. 20 to 25. The most surprising

aspect of these results is that the sign of Uy in the first flapping mode
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is opposite to that expected if the net were moving essentially as a rigid
body. The only term that is capable of producing this unexpected result

is the one that is proportional to B' in the expression for meridianal strain,
(Egn. (7-4)). The effect of this term is that, due to the curvature of the
net and the rigid kinematics of its diamond elements, a deflection in the
direction of the outward normal to the surface tends to produce a contrac-

tion in the circumferential direction.

Figures 20 to 25 also indicate that the degree of coupling increases
with increasing Bm and decreasing E/co. The latter result is expected in

view of the proximity relationships between frequencies shown in Fig. 18.

A major conclusion from the results of this section is that both the

lowest flapping mode and the lowest tangential mode should be included

in a realistic analysis of the stability and control of a vehicle employing
a rotor net decelerator. This becomes apparent when it is realized that the
frequency of vibration in the stationary coordinate system is equal to the
frequency of vibration in the rotating system minus the rotor speed so

that both modes have low frequencies in the stationary system. Should the
first tangential mode prove to have an adverse affect on stability, its fre-

quency can be raised by increasing the spiral angle of the net near the hub.
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APPENDIX A

METHOD FOR OBTAINING NUMERICAL SOLUTIONS TO VIBRATION PROBLEMS

In the main text the formulation of vibration problems is carried
to the point where integral expressions are written for the kinetic and
potential energies. The general procedure that has been used for obtaining

solutions is as follows:

1. Approximate the integrals by summations of terms that are func-

tions of displacements at discrete points.

2. Draw a picture of a lumped parameter physical system (in the
present case, an electrical network) for which the energy is
identical to the expressions obtained in step one and that pro-

perly satisfies all boundary conditions.

3. Solve the equations of the lumped parameter physical system on

a digital computer.

Electrical networks have been chosen as physical models primarily
because of the availability of a digital computer program (SADSAM IT) that
can solve the equations of any passive electrical network and that accepts
input data in a form that is particularly simple to prepare, i.e., a wiring

table for the network and a list of element values.

The general procedure will be explained with reference to the problem
formulated in section 6. Expressions for elastic energy, the work done

against static preload, and kinetic energy are given by Eqns. (6-18),
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(6-19) and (6-20). It will be noted that these expressions involve the «

sums of terms that are proportional to the squares of displacement quantities.

The stored energy of an electrical capacitor is
V. = = Ce (A-1)

where e is the voltage and C is the capacity. Also, for sinusoidally

varying voltage, the peak stored energy of an inductor is
v, = 2.1 ¢ (A-2)
L 2 2

where e is now the peak voltage, @ is the frequency in radians per second
and L is the inductance. Comparing these expressions with Egns. (6-18),

(6-19) and (6-20) it may be seen that V, may be identified with Ve and that

L
V_ may be identified with T - VS such that

\\—l _ -
Z; VL. - Ve (A‘3)
i ]

and
> Vo= TV (A-1)
i

where i and j are summed over all the inductors and capacitors of the
equivalent network. Furthermore it is evident by comparing Eqns. (6-18)

and (A-2) that the frequency, w, in the electrical network is analogous
o
to 7? . Thus the lowest resonant frequency of the electrical network

A2
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*» corresponds to the critical value of oO/E.

The integral of Eqn. (6-18) shall be replaced by a sum of terms each
of which approximates the energy over a short segment, Ar. Consider one

such term:

—_ E r2 A;Es - - tany :
Do = G Ar cosTyeost * g { A et + lug +ug) —}

u_ -+ : A U
N

where the finite difference operator Arﬂﬁr replaces 09/dr. Comparing
the result with Egn. (A-2) it is seen that AVé may be represented by the

energy of two inductors. For the first inductor

LI Ar * COSY, cosY* r2 (A-6)
L] t

;Js — - tany
e] - AT ctny (us M u@) r (A-7)

and similarly for the second inductor.

In the network E; and Gb are represented by voltages with respect to
ground at a number of points along the radial coordinate as shown in
Fig. A-1. The voltage e, in Eqn. (A-7) is obtained by adding such voltages

together in proper proportions. Ideal transformers are used for the pur-

pose as shown in Fig. A-I.
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Following the above procedure for all of the other energy terms a
complete electrical network representation of the problem is obtained.

A typical cell of the final network is shown in Fig. A-2.

The properties of the network can be investigated with a passive
analog computer, see reference 3, or with a digital computer as in the

present instance.
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